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1 用到的基础知识

定理 1. (带余除法) 设 a, b 是两个整数且 b ̸= 0. 则存在唯一的一对整数 q 和 r, 使得

a = bq + r, 0 ≤ r < |b|.

定理 2. (Bezout 定理，也称贝祖定理或裴蜀定理 ) 假设 a 和 b 都是正整数, d 是 a 和 b

的最大公因数，则存在整数m 和 n, 使得 ma+ nb = d.

定理 3. 设 a, b ∈ N∗, n ∈ Z. 则方程 ax+ by = n 有整数解 (x, y) 当且仅当 (a, b)|n. 而且
此时方程的所有解为

(x, y) =

(
x0 + t · b

d
, y0 − t · a

d

)
,

其中 d = (a, b), (x0, y0) 是方程的一个特解.

定理 4. (算术基本定理) 设 n 是大于 1 的正整数，则 n 可唯一的表示为一些互不相同

的素数方幂的乘积, 即

n = pe11 pe22 · · · perr ,
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其中 p1, p2, . . . , pr 是互不相同的素数且 p1 < p2 < · · · < pr, ei ≥ 1, 1 ≤ i ≤ r. 这儿的唯

一性是指：如果还存在不同的素数 q1, q2, . . . , qk 且 q1 < q2 < · · · < qk 以及 fj ≥ 1, 1 ≤
j ≤ k 使得

n = qf11 qf22 · · · qfkk .

则 r = k, 且 pi = qi, ei = fi, i = 1, . . . , r.

定理 5. 设 a, b,m, n ∈ N∗ 且 ab ̸= 1, (a, b) = 1. 不妨设 a ≥ b, n ≥ m. 则下列结论成立.

(1) (am − bm, an − bn) = a(m,n) − b(m,n).

(2) (am − bm)|(an − bn) ⇔ m|n.
(3) (am + bm)|(an + bn) ⇔ m|n, 且 n

m
是奇数.

1.1 同余

定义 1. 设 a, b, c ∈ Z, m ∈ N∗. 当 m|(a − b) 时, 我们说 a, b 模 m 同余, 记作 a ≡
b (mod m). 当m 不能整除 a− b 时，我们说 a, b 模m 不同余，记作 a ̸≡ b (mod m).

引理 1. 同余的等价性: 设 a, b, c ∈ Z, m ∈ N∗, 则

(1) 自身性: a ≡ a (mod m);

(2) 对称性: 如果 a ≡ b (mod m), 则 b ≡ a (mod m);

(3) 传递性: 如果 a ≡ b (mod m), b ≡ c (mod m), 则 a ≡ c (mod m).

引理 2. 设 a, b, c, d ∈ Z,m, n ∈ N∗, 且 a ≡ b (mod m), c ≡ d (mod m), 则

a+ c ≡ b+ d (mod m)

a− c ≡ b− d (mod m)

ac ≡ bd (mod m)

an ≡ bn (mod m)

引理 3. 设 a, b, c ∈ Z,m ∈ N∗ 且 c ̸≡ 0 (mod m), 如果 ac ≡ bc (mod m), 则 a ≡ b

(mod m
(m,c)

). 特别地, 如果 (m, c) = 1, 则 a ≡ b (mod m).

引理 4. 设 a, b, c ∈ Z,m ∈ N∗ 且 c ̸= 0. 如果 ac ≡ bc (mod mc), 则 a ≡ b (mod m).

引理 5. 设 a, b ∈ Z,m, n ∈ N∗ 且 n|m. 如果 a ≡ b (mod m), 则 a ≡ b (mod n).



1 用到的基础知识 3

引理 6. 设 a, b ∈ Z,mi ∈ N∗, i = 1, 2, . . . , n. 如果 a ≡ b (mod mi), i = 1, 2, . . . , n, 则

a ≡ b (mod [m1,m2, · · · ,mn]).

定义 2. 设 a, b ∈ Z, m ∈ N∗, 当 a ̸≡ 0 (mod m) 时, 我们把

ax+ b ≡ 0 (mod m) (1)

叫做模m 的一次同余式.

定理 6. 设 a ̸≡ 0 (mod m), 则一次同余式

ax+ b ≡ 0 (mod m) (2)

有整数解的充分必要条件是 (m, a)|b.

1.2 同余方程组及孙子定理(中国剩余定理)

定理 7. 孙子定理(中国剩余定理) 设 k ≥ 2, m1, · · · ,mk 是 k 个两两互素的正整数, 则

对任意 b1, b2, . . . , bk ∈ Z, 同余式组
x ≡ b1 (mod m1)

x ≡ b2 (mod m2)

· · · · · ·
x ≡ bk (mod mk)

(3)

有解且具有唯一的解:

x ≡ b1M
′
1M1 + b2M

′
2M2 + · · ·+ bkM

′
kMk (mod M). (4)

其中M = m1m2 · · ·mk = miMi, M ′
iMi ≡ 1 (mod mi), 1 ≤ i ≤ k.

定理 8. 若m1,m2, . . . ,mk 是 k 个两两互素的正整数，令m = m1m2 · · ·mk. 设

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, ai ∈ Z, i = 0, 1, . . . , n, an ̸≡ 0 (mod m).

则同余式

f(x) ≡ 0 (mod m) (5)

有解的充分必要条件是同余式

f(x) ≡ 0 (mod mi) (i = 1, 2, . . . , k)

都有解. 并且, 若用 Ti 表示 f(x) ≡ 0 (mod mi) 的模mi 互不相同的解数, T 表示 (5) 式

模m 互不相同的解数, 则 T = T1T2 · · ·Tk.
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1.3 完全剩余系与缩系

定义 3. 设 m 是给定的正整数, r ∈ {0, 1, 2, . . . ,m − 1}, 令 Cr = {qm + r | q ∈ Z}, 则
C0, C1, . . . , Cm−1 叫做模m 的剩余类.

定理 9. 设m > 0, C0, C1, . . . , Cm−1 是模m 的剩余类，则有

(1) 每一个整数恰好包含在某一个类 Cj 里，这里 0 ≤ j ≤ m− 1.

(2) 两个整数 x, y 属于同一个类的充分必要条件是 x ≡ y (mod m).

定义 4. 在模 m 的剩余类 C0, C1, . . . , Cm−1 中各取一数 aj ∈ Cj, j = 0, 1, . . . ,m − 1, 此

m 个数 a0, a1, . . . , am−1 称为模m 的一组完全剩余系.

定理 10. (1) m 个整数构成模 m 的一组完全剩余系的充分必要条件是两两模 m 不同

余;

(2) 设 (k,m) = 1, a1, . . . , am ∈ Z, 则 a1, . . . , am 是模 m 的一组完全剩余系的充分

必要条件是 ka1, . . . , kam 是模m 的一组完全剩余系;

(3) 设m1 > 0,m2 > 0, (m1,m2) = 1, 而 x1, x2 分别通过模m1,m2 的完全剩余系, 则

m2x1 +m1x2 通过模m1m2 的完全剩余系.

定义 5. (1) 设m ∈ N∗. 令 φ(m) = ♯{k | 1 ≤ k ≤ m, (k,m) = 1}, 即 φ(m) 表示不大于m

且和m 互素的正整数的个数. 函数 φ : N∗ −→ N∗,m 7→ φ(m), 称为欧拉(Euler) 函数.

(2)设 a1, . . . , aφ(m) ∈ Z满足 (ai,m) = 1, ai ̸≡ aj (mod m),∀ i ̸= j ∈ {1, 2, . . . , φ(m)},
则称 a1, . . . , aφ(m) 是模m 的一组缩系.

定理 11. (1) 设 a1, a2, . . . , am 是模m 的一组完全剩余系, 则

{ai | (ai,m) = 1, i = 1, 2, . . . ,m}

是模m 的一组缩系.

(2) 设 a1, . . . , aφ(m) 是 φ(m) 个与m 互素的整数, k ∈ Z 且 (k,m) = 1, 则下列等价:

(i) a1, . . . , aφ(m) 是模m 的一组缩系, 即 a1, . . . , aφ(m) 模m 两两不同余;

(ii) ka1, . . . , kaφ(m) 是模m 的一组缩系.

定理 12. 设m1,m2 是两个正整数且 (m1,m2) = 1. 如果 x1, x2 分别通过模m1,m2 的缩

系，则m2x1 +m1x2 通过模m1m2 的缩系.

推论 1. 若 (m1,m2) = 1, 则 φ(m1m2) = φ(m1)φ(m2).
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定理 13. 设 n ≥ 1, 则有
∑
d|n

φ(d) = n.

定理 14. 设 n 的标准分解为 n = pα1
1 pα2

2 · · · pαk
k , 则

φ(n) = n(1− 1

p1
) · · · (1− 1

pk
) = n

∏
p|n

(1− 1

p
).

其中乘积
∏
p|n
表示 p 跑遍 n 的所有素因子.

1.4 欧拉定理、费马小定理

定理 15. (欧拉定理) 设m 是大于 1 的整数，a 是一个整数且满足 (a,m) = 1, 则

aφ(m) ≡ 1 (mod m).

定理 16. (费马小定理) 设 p 是一个素数，a ∈ Z.
(1) ap ≡ a (mod p).

(2) 如果 (a, p) = 1, 则 ap−1 ≡ 1 (mod p).

1.5 原根

定义 6. 设m ∈ N∗, a ∈ Z 且 (a,m) = 1. 使得 al ≡ 1 (mod m) 成立的最小的正整数 l 称

为 a 模m 的阶. 记为 l = ordm(a).

定理 17. 设 l 为 a 模m 的阶, s ∈ Z. 则 as ≡ 1 (mod m) ⇔ l|s.

定义 7. 设m 是大于 1 的整数. 如果存在与m 互素的整数 g 使得 g 模m 的阶为 φ(m),

则称 g 是模m 的一个原根.

定理 18. 设m 是大于 1 的整数, 则整数 g 是模m 的原根⇔ g, g2, . . . , gφ(m) 是模m 的

一组缩系.

定理 19. 设m 是大于 1 的整数, 则存在模m 的原根⇔ m = 2, 4, pα, 2pα, 其中 α ≥ 1, p

是奇素数.

推论 2. 设 p 是一个素数，则

(1) 一定存在模 p 的原根，即存在 1 ≤ g ≤ p, 使得 g 模 p 的阶是 p − 1, 从而

g, g2, . . . , gp−1 是模 p 的一个缩系.

(2) 恰好有 φ(p− 1) 个模 p 两两互不同余的原根.
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1.6 积性函数

定义 8. 设 f 是定义在正整数集上的函数.

(1) 如果对任意正整数 m,n 且 (m,n) = 1, 总有 f(mn) = f(m)f(n), 则称函数 f 是

积性函数.

(2) 如果对任意正整数m,n, 总有 f(mn) = f(m)f(n), 则称函数 f 是完全积性函数.

定理 20. 欧拉函数具有如下性质.

(1) φ(n) 是积性函数，即, 如果 (m,n) = 1 则 φ(mn) = φ(m)φ(n).

(2) 设 (m,n) = d, 则 φ(mn) = φ(m)φ(n) d
φ(d)

.

(3) 如果m|n, 则 φ(m)|φ(n).
(4) 对任意正整数m, 有

∑
d|m

φ(d) = m.

1.7 提升幂引理

提升幂(LTE)引理： 设 n 是正整数, 如果 p 是奇素数, x, y ∈ Z, p|x − y, (p, x) = 1,

那么

vp(x
n − yn) = vp(x− y) + vp(n).

推论 3. 设 n 是正奇数, 如果 p 是奇素数, x, y ∈ Z, p|x+ y, (p, x) = 1, 那么

vp(x
n + yn) = vp(x+ y) + vp(n).
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2 例题选讲

1. 证明: 不定方程 x2 − y! = 2022 没有正整数解.

2. 设 a, b ∈ N 且 (a, b) = 1, a > 1, b > 1. 令 Sa,b = {ax+ by | x, y ∈ N}.

(1) 不定方程 ax+ by = n 有非负整数解当且仅当 n ∈ Sa,b.

(2) 不在 Sa,b 中的最大整数为 (a − 1)(b − 1) − 1 = ab − a − b. 因此, 对任意正整数

n ⩾ (a− 1)(b− 1), 不定方程 ax+ by = n 有非负整数解.

(3) 共有 1
2
(a− 1)(b− 1) 个正整数不在集合 Sa,b 中, 即共有 1

2
(a− 1)(b− 1) 个正整数 n

使得不定方程 ax+ by = n 没有非负整数解.

(4) 对任意整数 t : 0 ≤ t ≤ ab − a− b, 则 t ∈ Sa,b 当且仅当 ab − a− b − t ̸∈ Sa,b, 即不

定方程 ax+ by = t 和 ax+ by = ab− a− b− t 中有且仅有一个方程有非负整数解.

3. 设 p ≥ 5 是素数. 并设

p−1∑
i=1

1

i2
=

b

a
,

p−1∑
i=1

1

i
=

t

s
, a, b, s, t ∈ N∗, (a, b) = 1, (s, t) = 1.

证明： p|b, p2|t.

4. (1) 设 k 是一个正整数且对正整数m 的任一素因子 p, 都有 p− 1 ∤ k. 证明：∑
1≤i≤m,(i,m)=1

1

ik
≡ 0 (mod m).

(2) 设 p 是素数, 如果存在正奇数 k 满足 p− 1 ∤ k + 1, 证明：
p−1∑
i=1

1

ik
≡ 0 (mod p2).

5. 设m = 2epe11 pe22 · · · pekk ⩾ 2,其中 e, k ∈ N, p1, p2, . . . , pk 是互异的奇素数, e1, e2, . . . , ek ∈
N∗, 则同余方程 x2 ≡ 1 (mod m) 模m 互不相同的解数为

2k e = 0, 1,

2k+1, e = 2,

2k+2, e ≥ 3.

特别地, 同余方程 x2 ≡ 1 (mod m) 仅有两个模 m 不同的解当且仅当 m = 4, pα, 2pα, 其

中 p 是奇素数, α ∈ N∗.
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6. 设整数m ≥ 2. 令 S = {1 ≤ k ≤ m | (k,m) = 1}, P =
∏
k∈S

k. 证明: P ≡ ±1 (mod m)

且 P ≡ −1 (mod m) 当且仅当存在模 m 的原根, 即 m = 2, 4, pα, 2pα, 其中 p 是奇素数,

α ∈ N∗.

7. 求同余方程 xx ≡ 1 (mod 101) 在介于 101 与 1012 之间的整数解的个数.

8. 设整数 n ⩾ 2. 证明：不定方程 (x+ 1)n − xn = ny 在正整数集合中无解.

9. 设整数 n ≥ 2. 证明: n ∤ 2n − 1.

10. (1) 设 p 和 q 是两个素数, a ∈ Z. 如果 p

∣∣∣∣aq − 1

a− 1
, 则 p ≡ 1 (mod q) or p = q.

(2) 证明: 不定方程 x7−1
x−1

= y5 − 1 没有整数解.

11. 求不定方程 1 + 2x + 22x+1 = y2 的所有整数解.

12. 证明: 不定方程 3 · 2x + 1 = y2 仅有正整数解 (x, y) = (3, 5), (4, 7).

13. 求所有满足方程 8x + 15y = 17z 的正整数解．

14. 设m 是正的偶数, k 是自然数, 证明: 2m +m2 = k2 有唯一的解m = 6, k = 10.

15. 求解不定方程 7x = 3y + 4 和 2x + 3 = 11y.

16. 证明: 不定方程 y2 = x3 + 45 没有整数解.


