
基本不等式
几个重要不等式介绍：

1.平均不等式:若 naaaa ，，， 321 为正实数,且 ,1n ,定义如下四个平均值:

n
aaaa

A n
n


 321 (算术平均数), (321

n
nn aaaaG  几何平均数),

n
aaa

Q n
n

22
2

2
1 

 (平方平均数),

n

n

aaa

nH
111

21


 (调和平均数).

四个平均数有如下关系: nnnn QAGH  ,当且仅当 naaaa  321 时取等号.

2. 柯西不等式: 已知 ).321 niba ii  ，，，（， 均为非零实数,
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3.排序不等式: 设 naaa  21 及 nbbb  21 ,则

nnbababa  2211 ( 同 序 和 )
njnjj bababa 

21 21 ( 乱 序 和 )

1121 bababa nnn    (逆序和) 其中 njjj 21 是 1,2,3,…n 的任一排列,当且仅当

naaa  21 或 nbbb  21 时等号成立.

4. 切比雪夫不等式：若 naaa  21 ， nbbb  21 ，则：

112121212211 ))((1 babababbbaaa
n

bababa nnnnnnn   

5.琴生不等式: 若  xf 是下凸函数,则对其定义域中的任意 n 个点 nxxx ,, 21 ,则

      n
n xfxfxf

nn
xxxf 









 

21
21 1

,当且仅当 nxxx  21 等号成立.



例题选讲

1. 设 的三内角，为为实数， ABCCBAzyx ,,,,

CxyBxzAyzzyx cos2cos2cos2222 求证： .

2. 已知 2 2 2, , , 1, 1x y z x y z x y z      R ，求 xyz的最值．

3. 已知 641 654321  aaaaaa ，求
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5.设 , ,a b c R ，求证：
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8.正实数 , ,x y z满足 9 4xyz xy yz zx    ，求证：（1） 4
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10．已知 ),2,1,,2,1(,0 mjniaij   ，则
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11. 已知 ii ba ,  0,求证:
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12.（1）设三个正实数 , ,a b c满足 2 2 2 2 4 4 4( ) 2( )a b c a b c     ，求证： , ,a b c一定是某个三
角形的三边．

（2）设 ( 3)n n  个正实数 1 2, , na a a 满足： 2 2 2 2 4 4 4
1 2 1 2( ) ( 1)( )n na a a n a a a         ．

求证：这些数中任何三个一定是某个三角形的三条边长．



13.设 ,a b是正实数，且 1ab  ．求证：
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14. 设 , ,x y z R ，求证：
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15. 正数 , ,a b c满足 1a b c   ，证明：
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16. 设 , , ,a b c d 为正实数，且 4a b c d    ．证明：
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17. 已知 a1,a2,a3,…,an为正数，且 ，求证：
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